The Complex Frobenius Theorem for Rough Involutive Structures

نویسنده

  • Michael Taylor
چکیده

We establish a version of the complex Frobenius theorem in the context of a complex subbundle S of the complexified tangent bundle of a manifold, having minimal regularity. If the subbundle S defines the structure of a Levi-flat CR-manifold, it suffices that S be Lipschitz for our results to apply. A principal tool in the analysis is a precise version of the Newlander-Nirenberg theorem with parameters, for integrable almost complex structures with minimal regularity, which builds on previous recent work of the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 7 The Complex Frobenius Theorem for Rough Involutive Structures

We establish a version of the complex Frobenius theorem in the context of a complex subbundle S of the complexified tangent bundle of a manifold, having minimal regularity. If the subbundle S defines the structure of a Levi-flat CR-manifold, it suffices that S be Lipschitz for our results to apply. A principal tool in the analysis is a precise version of the Newlander-Nirenberg theorem with par...

متن کامل

The Frobenius Theorem for Graded Manifolds and Applications in Graded Symplectic Geometry

The Frobenius theorem is extended from supermanifolds to N-graded manifolds. It is shown, both for super and N-graded manifolds, that the characteristic distribution of a presymplectic submanifold is involutive and hence integrable.

متن کامل

Frobenius kernel and Wedderburn's little theorem

We give a new proof of the well known Wedderburn's little theorem (1905) that a finite‎ ‎division ring is commutative‎. ‎We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group‎ ‎theory to build a proof‎.

متن کامل

The Frobenius Properad Is Koszul

We show Koszulness of the prop governing involutive Lie bialgebras and also of the props governing non-unital and unital-counital Frobenius algebras, solving a long-standing problem. This gives us minimal models for their deformation complexes, and for deformation complexes of their algebras which are discussed in detail. Using an operad of graph complexes we prove, with the help of an earlier ...

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006